76 research outputs found

    Sensitivity to Angular and Radial Source Movements as a Function of Acoustic Complexity in Normal and Impaired Hearing

    Get PDF
    In contrast to static sounds, spatially dynamic sounds have received little attention in psychoacoustic research so far. This holds true especially for acoustically complex (reverberant, multisource) conditions and impaired hearing. The current study therefore investigated the influence of reverberation and the number of concurrent sound sources on source movement detection in young normal-hearing (YNH) and elderly hearing-impaired (EHI) listeners. A listening environment based on natural environmental sounds was simulated using virtual acoustics and rendered over headphones. Both near-far (‘radial’) and left-right (‘angular’) movements of a frontal target source were considered. The acoustic complexity was varied by adding static lateral distractor sound sources as well as reverberation. Acoustic analyses confirmed the expected changes in stimulus features that are thought to underlie radial and angular source movements under anechoic conditions and suggested a special role of monaural spectral changes under reverberant conditions. Analyses of the detection thresholds showed that, with the exception of the single-source scenarios, the EHI group was less sensitive to source movements than the YNH group, despite adequate stimulus audibility. Adding static sound sources clearly impaired the detectability of angular source movements for the EHI (but not the YNH) group. Reverberation, on the other hand, clearly impaired radial source movement detection for the EHI (but not the YNH) listeners. These results illustrate the feasibility of studying factors related to auditory movement perception with the help of the developed test setup

    Exploring Differences in Speech Processing Among Older Hearing-Impaired Listeners With or Without Hearing Aid Experience: Eye-Tracking and fMRI Measurements

    Get PDF
    Recently, evidence has been accumulating that untreated hearing loss can lead to neurophysiological changes that affect speech processing abilities in noise. To shed more light on how aiding may impact these effects, this study explored the influence of hearing aid (HA) experience on the cognitive processes underlying speech comprehension. Eye-tracking and functional magnetic resonance imaging (fMRI) measurements were carried out with acoustic sentence-in-noise (SiN) stimuli complemented by pairs of pictures that either correctly (target picture) or incorrectly (competitor picture) depicted the sentence meanings. For the eye-tracking measurements, the time taken by the participants to start fixating the target picture (the ‘processing time’) was measured. For the fMRI measurements, brain activation inferred from blood-oxygen-level dependent responses following sentence comprehension was measured. A noise-only condition was also included. Groups of older hearing-impaired individuals matched in terms of age, hearing loss, and working memory capacity with (eHA; N = 13) or without (iHA; N = 14) HA experience participated. All acoustic stimuli were presented via earphones with individual linear amplification to ensure audibility. Consistent with previous findings, the iHA group had significantly longer (poorer) processing times than the eHA group, despite no differences in speech recognition performance. Concerning the fMRI measurements, there were indications of less brain activation in some right frontal areas for SiN relative to noise-only stimuli in the eHA group compared to the iHA group. Together, these results suggest that HA experience leads to faster speech-in-noise processing, possibly related to less recruitment of brain regions outside the core sentence-comprehension network. Follow-up research is needed to substantiate the findings related to changes in cortical speech processing with HA use

    Towards Auditory Profile-Based Hearing-Aid Fittings:BEAR Rationale and Clinical Implementation

    Get PDF
    (1) Background: To improve hearing-aid rehabilitation, the Danish ‘Better hEAring Rehabilitation’ (BEAR) project recently developed methods for individual hearing loss characterization and hearing-aid fitting. Four auditory profiles differing in terms of audiometric hearing loss and supra-threshold hearing abilities were identified. To enable auditory profile-based hearing-aid treatment, a fitting rationale leveraging differences in gain prescription and signal-to-noise (SNR) improvement was developed. This report describes the translation of this rationale to clinical devices supplied by three industrial partners. (2) Methods: Regarding the SNR improvement, advanced feature settings were proposed and verified based on free-field measurements made with an acoustic mannikin fitted with the different hearing aids. Regarding the gain prescription, a clinically feasible fitting tool and procedure based on real-ear gain adjustments were developed. (3) Results: Analyses of the collected real-ear gain and SNR improvement data confirmed the feasibility of the clinical implementation. Differences between the auditory profile-based fitting strategy and a current ‘best practice’ procedure based on the NAL-NL2 fitting rule were verified and are discussed in terms of limitations and future perspectives. (4) Conclusion: Based on a joint effort from academic and industrial partners, the BEAR fitting rationale was transferred to commercially available hearing aids

    Auditory Tests for Characterizing Hearing Deficits in Listeners With Various Hearing Abilities: The BEAR Test Battery

    Get PDF
    The Better hEAring Rehabilitation (BEAR) project aims to provide a new clinical profiling tool—a test battery—for hearing loss characterization. Although the loss of sensitivity can be efficiently measured using pure-tone audiometry, the assessment of supra-threshold hearing deficits remains a challenge. In contrast to the classical “attenuation-distortion” model, the proposed BEAR approach is based on the hypothesis that the hearing abilities of a given listener can be characterized along two dimensions, reflecting independent types of perceptual deficits (distortions). A data-driven approach provided evidence for the existence of different auditory profiles with different degrees of distortions. Ten tests were included in a test battery, based on their clinical feasibility, time efficiency, and related evidence from the literature. The tests were divided into six categories: audibility, speech perception, binaural processing abilities, loudness perception, spectro-temporal modulation sensitivity, and spectro-temporal resolution. Seventy-five listeners with symmetric, mild-to-severe sensorineural hearing loss were selected from a clinical population. The analysis of the results showed interrelations among outcomes related to high-frequency processing and outcome measures related to low-frequency processing abilities. The results showed the ability of the tests to reveal differences among individuals and their potential use in clinical settings

    Impact of hearing aid technology level at first-fit on self-reported outcomes in patients with presbycusis: a randomized controlled trial

    Get PDF
    To provide clinical guidance in hearing aid prescription for older adults with presbycusis, we investigated differences in self-reported hearing abilities and hearing aid effectiveness for premium or basic hearing aid users. Secondly, as an explorative analysis, we investigated if differences in gain prescription verified with real-ear measurements explain differences in self-reported outcomes. The study was designed as a randomized controlled trial in which the patients were blinded towards the purpose of the study. In total, 190 first-time hearing aid users (>60 years of age) with symmetric bilateral presbycusis were fitted with either a premium or basic hearing aid. The randomization was stratified on age, sex, and word recognition score. Two outcome questionnaires were distributed: the International Outcome Inventory for Hearing Aids (IOI-HA) and the short form of the Speech, Spatial, and Qualities of Hearing Scale (SSQ-12). In addition, insertion gains were calculated from real-ear measurements at first-fit for all fitted hearing aids. Premium hearing aid users reported 0.7 (95%CI: 0.2; 1.1) scale points higher total SSQ-12 score per item and 0.8 (95%CI: 0.2; 1.4) scale points higher speech score per item, as well as 0.6 (95%CI: 0.2; 1.1) scale points higher qualities score compared to basic-feature hearing aid users. No significant differences in reported hearing aid effectiveness were found using the IOI-HA. Differences in the prescribed gain at 1 and 2 kHz were observed between premium and basic hearing aids within each company. Premium-feature devices yielded slightly better self-reported hearing abilities than basic-feature devices, but a statistically significant difference was only found in three out of seven outcome variables, and the effect was small. The generalizability of the study is limited to community-dwelling older adults with presbycusis. Thus, further research is needed for understanding the potential effects of hearing aid technology for other populations. Hearing care providers should continue to insist on research to support the choice of more costly premium technologies when prescribing hearing aids for older adults with presbycusis.Clinical Trial Registration:https://register.clinicaltrials.gov/, identifier NCT04539847

    Precision and accuracy of single-molecule FRET measurements - a multi-laboratory benchmark study

    Get PDF
    Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2
    • 

    corecore